Students

Active Projects

Paper Submissions

Wearable Health Monitoring

Wearable health technology is drawing significant attention for good reasons. The pervasive nature of such systems providing ubiquitous access to information will transform the way people interact with each other and their environment. The resulting information extracted from these systems will enable emerging applications in healthcare, wellness, emergency response, fitness monitoring, elderly care support, long-term preventive chronic care, assistive care, smart environments, sports, gaming, and entertainment which create many new research opportunities and transform researches from various disciplines.

Despite the ground-breaking potentials, there are a number of interesting challenges in order to design and develop wearable medical embedded systems. Due to limited available resources in wearable processing architectures, power-efficiency is demanded to allow unobtrusive and long-term operation of the hardware. Also, the data-intensive nature of continuous health monitoring requires efficient signal processing and data analytics algorithms for real-time, scalable, reliable, accurate, and secure extraction of relevant information from an overwhelmingly large amount of data. Therefore, extensive research in their design, development, and assessment is necessary.

 

Embedded Processing Platform Design

The majority of my work concentrates on designing wearable embedded processing platforms in order to shift the conventional paradigms from hospital-centric healthcare with episodic and reactive focus on diseases to patient-centric and home-based healthcare as an alternative segment which demands outstanding specialized design in terms of hardware design, software development, signal processing and uncertainty reduction, data analysis, predictive modeling and information extraction. The objective is to reduce the costs and improve the effectiveness of healthcare by proactive early monitoring, diagnosis, and treatment of diseases (i.e. preventive).

 

Big Data

There are several challenges in the development, validation, and utilization of complex sensing and monitoring systems to produce reliable and consistent measurements in uncontrolled user environments. Massive data is generated with different nature that needs to be analyzed in spatial, spectral, and temporal space individually and in groups. We use big data platforms and clusters to analyze the ultra-high dimensional space problems and extract more efficient features.